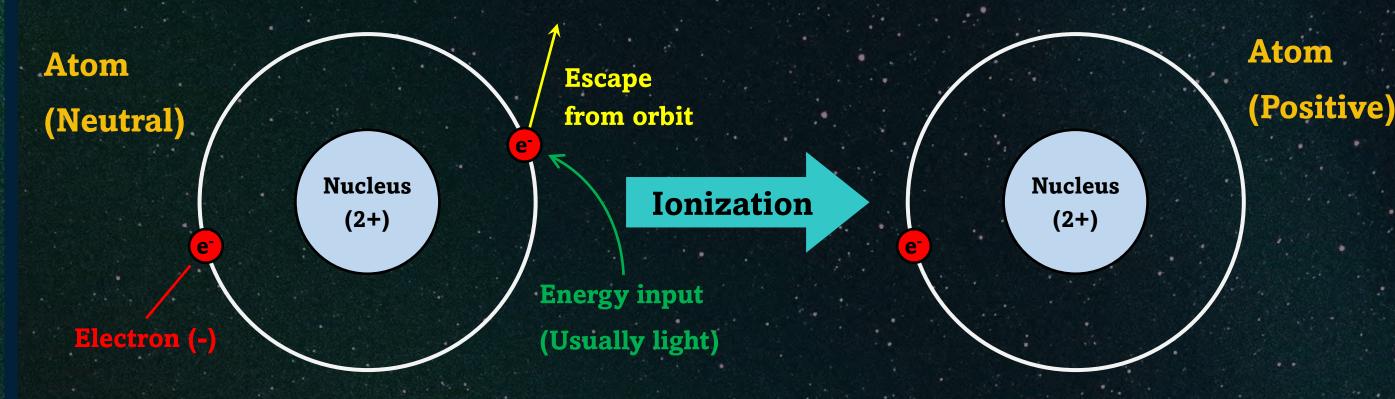
Watching Aurora in Passive Galaxies: Temperature measurement and constraint on ionization source Man Yin Leo Lee and Renbin Yan Department of Physics, The Chinese University of Hong Kong


What is ionization?

- In the interstellar medium, **ionization** refers to the process describing an atom losing electrons and becoming positively charged due to external energy input.
- There are **different levels of ionizations**. Atoms can lose single

Scientific Problem

• Low-ionization Emission Line Regions (LIERs) are regions that contain large amounts of low-level ionized atoms. • LIERs are found in **elliptical galaxies** which are old and evolved. Ionization sources of these LIERs remain unknown.

or multiple electrons depending on the energy input.

Types of galaxies

Type: Spiral galaxy Shape: Spiral and disky Star-formation: Many Age: Young

Type: Elliptical galaxy Shape: Ellipsoidal Star-formation: None Age: Old

• Active Galactic Nuclei were thought to be the source of ionization but spatially resolved observation proved that LIERs extend outside the nuclear region.

• Different sources inject energy differently, giving the interstellar medium **different temperatures**, providing astronomers a way to solve the mystery.

• Popular candidates: (1) Light from old stars, (2) Supersonic shocks induced by collisions between gas clouds.

LIERs observed outside nuclear region

Active Galactic Nuclei

• The mea-

sured auroral

line strengths

Methodology

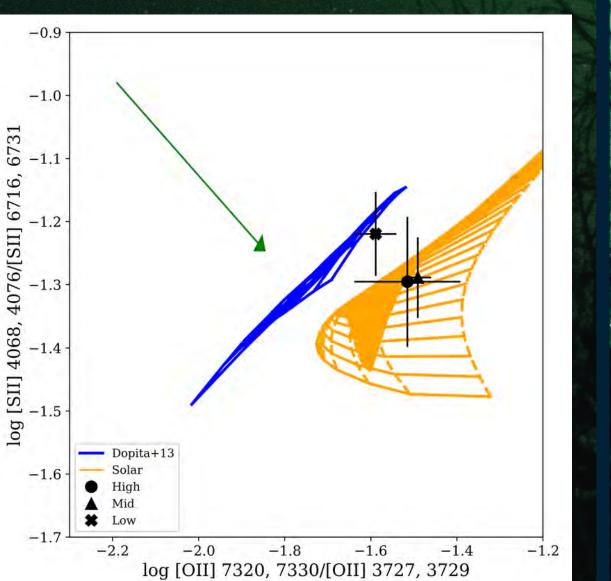
- Light we see is added up by light in different wavelengths.
- Different wavelengths of light can be decomposed by a **spectrograph**.
- Auroral light is from **certain wavelengths** and is **dependent on the temperature** of the origin.
- By measuring the amount of light in those wavelengths, the strength of auroral light can be obtained.
- The plot of strength versus wavelength is called a spectrum.

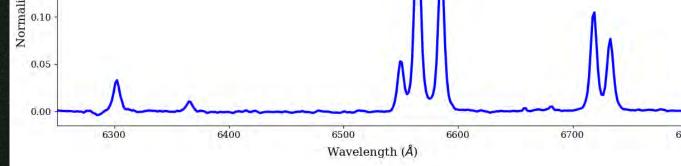
Auroral lines

1. Name: **[NII] λ5755**

ELLIPTICAL GALAXY NGC4510

are plotted against each other and compared to the models of the two popular candidates.


• The temperatures derived from different sets of data (Black) seems to be more consistent with models of shocks originating from collisions between clouds


Interstellar shocks

Old stars

Results

log [NII] 5755/[NII] 6583

Part of a stacked spectrum from the sampled galaxies

Ionization state

Color: Green 2. **[SII]** λλ4068,4076 Color: Purple 3. **[OII]** λλ7320, 7330 Color: Red Wavelength (in 10⁻¹⁰m) 4. **[OIII]** λ**4363 0 1 113727, 3729** Color: Blue Wavelength (2nd line if applicable)

Photo credit: ESA / Hubble

Element

We acknowledge financial support by the Direct Grant from CUHK Faculty of Science.

(Orange) than photoionization by old stars (Blue).

• Nevertheless, some data points are not well measured or inconsistent with the shock models.

Future directions

 Investigate the possibility of different ionization sources in different parts of the galaxy or different galaxies. • Improve the model and make deeper observations.

Reference:

Yan, R. (2018). Shocks or photoionization: Direct temperature measurements of the low-ionization gas in quiescent galaxies. Monthly Notices of the Royal Astronomical Society, 481(1), 476–493.